Stacy Andersen, PhD
Assistant Professor
Boston University Chobanian & Avedisian School of Medicine
Medicine
Geriatrics

PhD, Boston University School of Medicine
BS, Brandeis University



Stacy Andersen, PhD is a behavioral neuroscientist and co-director of the New England Centenarian Study. Her primary research interests lie in the study of exceptionally long-lived individuals and the ability of some to avoid or be more resilient to cognitive dysfunction to very old ages. Building on her research experience in running the day-to-day activities of 2 longitudinal studies of human longevity, the New England Centenarian Study (NECS) and the NIA-funded U-19 Boston Center of the Long Life Family Study (LLFS), her earliest work focused on the compression of morbidity and disability among centenarians and long-lived families. Historically, gerontologists and the lay public assumed that living longer was associated with an increased duration of age-related illnesses. Then, in 1980, Jim Fries proposed his compression of morbidity hypothesis, suggesting that as people live to the limit of human life span, they necessarily postpone or delay age-related diseases towards the end of life. She investigated this hypothesis in relation to cancer, normally associated with high mortality risk and documented a 17-year delay in the onset of cancer diagnoses compared with a national cancer database. Next, she published evidence that those truly near the limit of human life span, supercentenarians (age 110+ years), postpone not only morbidity but also functional and cognitive decline. The supercentenarians spend an average of the last 5 years of their lives with one or more age-related diseases whereas younger centenarians spend approximately 9 years with morbidity. These studies demonstrate that extremely long-lived individuals are models for disease-free aging that can help us learn more about health spans and successful aging.

Her current work in the area of exceptional aging research focuses on cognitive reserve and the maintenance of cognitive function into extreme old age. The ability of many long-lived individuals to avoid dementia sparked her interest in studying whether their family members have better cognition than their peers. She led an analysis of cognitive function among centenarian offspring in the New England Centenarian Study which revealed that they have a 46% lower odds of baseline cognitive impairment and were 35% less likely to become cognitively impaired over 8 years of follow up compared with referents without familial longevity. Similarly, in the Long Family Study, she was involved in studies revealing that family members from the offspring generation perform better on some tests of neuropsychological function than their spouses who do not have familial longevity. Assessment of more specific deficits in cognitive function consistent with Alzheimer’s disease revealed lower risk of impairment among individuals with familial longevity compared with their spouses. These findings led her to write a viewpoint article on the potential of centenarians to serve as models of resistance and resilience to Alzheimer’s disease which became the foundation of the multi-site U19 project called Resilience/Resistance to Alzheimer’s Disease in Centenarians and Offspring (RADCO). In addition to being a multiple PI of this project, she is the lead of the Phenotyping and Biospecimen Core, responsible for constructing and implementing protocols to identify cognitive “superagers” and comprehensively evaluating their brain function. She is also the lead investigator of Project 1 which aims to gauge levels of resilience to Alzheimer’s disease by integrating neuropsychological, blood biomarker, neuroimaging, and neuropathological data to understand whether the ability to avoid or cope better with pathological brain changes contributes to exceptional cognitive until the end of life.

Her other primary area of research focuses on methods of detecting subclinical cognitive changes. As an expert in the area of neuropsychological assessment and analyses, she plays a critical role in the development of neuropsychological testing protocols across longevity studies as well as the implementation of digital technologies to capture spoken language and motor function during test performance. On this novel forefront of digital neuropsychological assessment, she is currently involved in the development and analysis of digital markers of cognitive function. Using data collected with a digital pen on a test of psychomotor speed, she led research that showed patterns of change in performance speed that were related to specific physical and cognitive functions suggesting the ability to differentiate motor slowing versus cognitive slowing. Variations in written, as well as verbal, responses captured with digital technologies may prove to be sensitive, efficient, and objective markers of cognitive impairment beyond what can be captured by standard hand-scoring of test data. The hope is that these digital markers may be integrated into the technologies that we already use in our daily lives to capture changes in cognitive function as early as possible to prevent future decline.


Digital Markers of Cognition Across the Spectrum of Preclinical Cognitive Impairment to Dementia
06/15/2020 - 05/31/2023 (PI)
NIH/National Institute on Aging
5K01AG057798-05


Digital Markers of Cognition Across the Spectrum of Preclinical Cognitive Impairment to Dementia
06/01/2019 - 05/31/2020 (Subcontract PI)
PI: Stacy Andersen, PhD
National Institute on Aging/NIH/DHHS NIH
5K01AG057798-02

Supplement to Diagnosing Dementia in LLFS
09/07/2018 - 05/31/2019 (Subcontract PI)
PI: Stacy Andersen, PhD
Trustees of Columbia University NIH


Title


Yr Title Project-Sub Proj Pubs
2024 Phenotyping and Biospecimen Core 5U19AG073172-04-6354
2024 Resilience/Resistance to Alzheimer's Disease in Centenarians and Offspring (RADCO) 5U19AG073172-04
2023 Resilience/Resistance to Alzheimer's Disease in Centenarians and Offspring (RADCO) 3U19AG073172-03S1
2023 Phenotyping and Biospecimen Core 3U19AG073172-03S1-5905
2023 Resilience/Resistance to Alzheimer's Disease in Centenarians and Offspring (RADCO) 5U19AG073172-03
2023 Phenotyping and Biospecimen Core 5U19AG073172-03-6354
2022 Phenotyping and Biospecimen Core 5U19AG073172-02-6962
2022 Resilience/Resistance to Alzheimer's Disease in Centenarians and Offspring (RADCO) 3U19AG073172-01S1
2022 Digital Markers of Cognition Across the Spectrum of Preclinical Cognitive Impairment to Dementia 5K01AG057798-05
2021 Resilience/Resistance to Alzheimer's Disease in Centenarians and Offspring (RADCO) 1U19AG073172-01
Showing 10 of 15 results. Show All Results

Publications listed below are automatically derived from MEDLINE/PubMed and other sources, which might result in incorrect or missing publications. Faculty can login to make corrections and additions.

iCite Analysis       Copy PMIDs To Clipboard

  1. Sebastiani P, Monti S, Lustgarten MS, Song Z, Ellis D, Tian Q, Schwaiger-Haber M, Stancliffe E, Leshchyk A, Short MI, Ardisson Korat AV, Gurinovich A, Karagiannis T, Li M, Lords HJ, Xiang Q, Marron MM, Bae H, Feitosa MF, Wojczynski MK, O'Connell JR, Montasser ME, Schupf N, Arbeev K, Yashin A, Schork N, Christensen K, Andersen SL, Ferrucci L, Rappaport N, Perls TT, Patti GJ. Metabolite signatures of chronological age, aging, survival, and longevity. Cell Rep. 2024 Nov 26; 43(11):114913.View Related Profiles. PMID: 39504246
     
  2. Dowrey TW, Cranston SF, Skvir N, Lok Y, Gould B, Petrowitz B, Villar D, Shan J, James M, Dodge M, Belkina AC, Giadone RM, Milman S, Sebastiani P, Perls TT, Andersen SL, Murphy GJ. A longevity-specific bank of induced pluripotent stem cells from centenarians and their offspring. Aging Cell. 2024 Sep 25; e14351.View Related Profiles. PMID: 39319670; DOI: 10.1111/acel.14351;
     
  3. Reed ER, Chandler KB, Lopez P, Costello CE, Andersen SL, Perls TT, Li M, Bae H, Soerensen M, Monti S, Sebastiani P. Cross-platform proteomics signatures of extreme old age. Geroscience. 2024 Jul 25.View Related Profiles. PMID: 39048883
     
  4. Reed ER, Chandler KB, Lopez P, Costello CE, Andersen SL, Perls TT, Li M, Bae H, Soerensen M, Monti S, Sebastiani P. Cross-platform proteomics signatures of extreme old age. bioRxiv. 2024 Apr 14.View Related Profiles. PMID: 38645061; PMCID: PMC11030369; DOI: 10.1101/2024.04.10.588876;
     
  5. Dowrey TW, Cranston SF, Skvir N, Lok Y, Gould B, Petrowitz B, Villar D, Shan J, James M, Dodge M, Belkina AC, Giadone RM, Sebastiani P, Perls TT, Andersen SL, Murphy GJ. A longevity-specific bank of induced pluripotent stem cells from centenarians and their offspring. bioRxiv. 2024 Mar 14.View Related Profiles. PMID: 38559230; PMCID: PMC10979955; DOI: 10.1101/2024.03.12.584663;
     
  6. Patel R, Cosentino S, Zheng EZ, Schupf N, Barral S, Feitosa M, Andersen SL, Sebastiani P, Ukraintseva S, Christensen K, Zmuda J, Thyagarajan B, Gu Y. Systemic inflammation in relation to exceptional memory in the Long Life Family Study (LLFS). Brain Behav Immun Health. 2024 May; 37:100746.View Related Profiles. PMID: 38476338; PMCID: PMC10925922; DOI: 10.1016/j.bbih.2024.100746;
     
  7. Xicota L, Cosentino S, Vardarajan B, Mayeux R, Perls TT, Andersen SL, Zmuda JM, Thyagarajan B, Yashin A, Wojczynski MK, Krinsky-McHale S, Handen BL, Christian BT, Head E, Mapstone ME, Schupf N, Lee JH, Barral S. Whole genome-wide sequence analysis of long-lived families (Long-Life Family Study) identifies MTUS2 gene associated with late-onset Alzheimer's disease. Alzheimers Dement. 2024 Apr; 20(4):2670-2679.View Related Profiles. PMID: 38380866; PMCID: PMC11032545; DOI: 10.1002/alz.13718;
     
  8. Schumacher BT, Kehler DS, Kulminski AM, Qiao YS, Andersen SL, Gmelin T, Christensen K, Wojczynski MK, Theou O, Rockwood K, Newman AB, Glynn NW. The association between frailty and perceived physical and mental fatigability: The Long Life Family Study. J Am Geriatr Soc. 2024 Jan; 72(1):219-225. PMID: 37814920; PMCID: PMC10843058; DOI: 10.1111/jgs.18624;
     
  9. Leshchyk A, Xiang Q, Andersen SL, Gurinovich A, Song Z, Lee JH, Christensen K, Yashin A, Wojczynski M, Schwander K, Perls TT, Monti S, Sebastiani P. Mosaic Chromosomal Alterations and Human Longevity. J Gerontol A Biol Sci Med Sci. 2023 Aug 27; 78(9):1561-1568.View Related Profiles. PMID: 36988570; PMCID: PMC10460554; DOI: 10.1093/gerona/glad095;
     
  10. Karagiannis TT, Dowrey TW, Villacorta-Martin C, Montano M, Reed E, Belkina AC, Andersen SL, Perls TT, Monti S, Murphy GJ, Sebastiani P. Multi-modal profiling of peripheral blood cells across the human lifespan reveals distinct immune cell signatures of aging and longevity. EBioMedicine. 2023 Apr; 90:104514.View Related Profiles. PMID: 37005201; PMCID: PMC10114155; DOI: 10.1016/j.ebiom.2023.104514;
     
Showing 10 of 80 results. Show More

This graph shows the total number of publications by year, by first, middle/unknown, or last author.

Bar chart showing 78 publications over 22 distinct years, with a maximum of 10 publications in 2021

YearPublications
19981
20042
20051
20062
20071
20083
20092
20101
20113
20124
20135
20141
20154
20162
20173
20182
20196
20205
202110
20228
20235
20247
In addition to these self-described keywords below, a list of MeSH based concepts is available here.

Cognition
Dementia
Centenarian
Longevity
Aging
Neuropsychological Assessment

Available to Mentor as: (Review Mentor Role Definitions):
  • Project Mentor
Contact for Mentoring:

72 E. Concord St Robinson (B)
Boston MA 02118
Google Map


Andersen's Networks
Click the "See All" links for more information and interactive visualizations
Concepts
_
Media Mentions
_
Co-Authors
_
Similar People
_
Same Department