Tonya Colpitts, PhD
Assistant Professor
Boston University School of Medicine
Dept of Microbiology

PhD, University of Texas Medical Branch

My research focuses on arbovirus pathogenesis and cellular interactions during infection in the mosquito and the mammal, examining the host-virus-vector interface. Arboviral diseases are one of the leading causes of morbidity and disability in the developing world. The majority of these diseases lack an effective vaccine or specific treatment to prevent infection and control transmission. We aim to uncover mechanisms at play during the entire arboviral transmission cycle, from infection in the mammal to acquisition in the mosquito vector, and transmission from the mosquito back to the mammal.

Currently our research is focused on dengue and Zika viruses, both flaviviruses transmitted by Aedes mosquitoes. Dengue virus causes serious human disease and mortality worldwide. Infection results in a severe febrile illness, occasionally leading to lethal hemorrhagic fever, especially in children. In recent years, there has been increased epidemic activity and geographic expansion of dengue infection along with its mosquito vector, and it is considered a serious emerging global health problem. The disease has an enormous impact on the health and economies of tropical and subtropical regions, with dengue infections occurring in Asia, the Americas, Africa, Pacific and Mediterranean regions. While most cases in the United States occur in travelers returning from endemic areas, there have been recent outbreaks in Texas, Florida and Hawaii, where transmission occurred on American soil. Zika virus is a rapidly emerging flavivirus that has recently been responsible for severe disease outbreaks in the Western hemisphere. Zika fever is characterized by mild headache, rash, fever, malaise, conjunctivitis, and joint pain. There are no targeted therapeutics or prophylactic drugs, and treatment is generally palliative. Recently described neurological complications of Zika virus infection include babies born with microcephaly and the development of Guillain-Barre syndrome in adults. As climate change continues, the range of Aedes, the mosquito vectors of dengue and Zika viruses, is expected to expand northwards, placing an increased proportion of the US public at risk for disease.

There are no vaccines or specific therapeutic agents approved for dengue or Zika virus infection. The development of a safe and effective vaccine for dengue has been hindered by antibody-dependent enhancement, in which exposure to and development of antibodies against one dengue serotype can lead to severe hemorrhagic fever upon infection with a different serotype. Our lab and others have also shown that dengue antibodies can enhance Zika virus infection. We are currently examining the causes and effects of antibody-dependent enhancement of both viruses using primary human cells. As mentioned, both dengue and Zika are transmitted to humans by mosquito vectors. An attractive complement to traditional vaccine design is to induce an immune response in the vertebrate host (infected or non-infected) that will block virus infection of mosquito transmission vectors. These types of vaccine strategies are termed transmission-blocking vaccines (TBVs). Inhibiting the ability of mosquitoes to acquire a dengue virus infection would eliminate an important step in the infection cycle and represent a novel, highly effective method to disrupt the infected patient to mosquito transmission step and limit the size of arboviral outbreaks. We are currently working on the development of TBVs using Aedes mosquito proteins in our lab. Other projects in the lab include examining the impact of human host blood factors on mosquito arbovirus infection, investigating human-mosquito immune cross-talk, looking at the role of skin cells in initial flavivirus infection and what impact immature virions have on both acquisition in the mosquito vector and transmission to mammalian hosts.

2017 National Institutes of Health: NIAID SBIR Award
2016 Burroughs Wellcome Fund Award
2016 University of South Carolina: Aspire II Research Award
2015 National Institutes of Health: COBRE Pilot Study Award
2013 National Institutes of Health: K22 Research Scholar Development Award
2011 American Society of Trop. Medicine & Hygiene: Postdoctoral Travel Award
2011 American Society for Virology: Postdoctoral Travel Award
2006 American Society for Virology: Graduate Fellow Travel Award

Effects of pre-existing dengue virus immunity on Zika virus infection
08/07/2017 - 07/31/2019 (PI)
NIH/National Institute of Allergy & Infectious Diseases

Yr Title Project-Sub Proj Pubs
Publications listed below are automatically derived from MEDLINE/PubMed and other sources, which might result in incorrect or missing publications. Faculty can login to make corrections and additions.

  1. Londono-Renteria B, Troupin A, Cardenas JC, Hall A, Perez OG, Cardenas L, Hartstone-Rose A, Halstead SB, Colpitts TM. A relevant in vitro human model for the study of Zika virus antibody-dependent enhancement. J Gen Virol. 2017 Jul; 98(7):1702-1712. PMID: 28691657.
  2. Hall A, Troupin A, Londono-Renteria B, Colpitts TM. Garlic Organosulfur Compounds Reduce Inflammation and Oxidative Stress during Dengue Virus Infection. Viruses. 2017 Jun 23; 9(7). PMID: 28644404.
  3. Hall A, Troupin A, Londono-Renteria B, Colpitts TM. Garlic Organosulfur Compounds Reduce Inflammation and Oxidative Stress during Dengue Virus Infection. Viruses. 2017 Jun 22; 9(6). PMID: 28640234.
  4. Londono-Renteria B, Marinez-Angarita JC, Troupin A, Colpitts TM. Role of Mast Cells in Dengue Virus Pathogenesis. DNA Cell Biol. 2017 Jun; 36(6):423-427. PMID: 28486041; DOI: 10.1089/dna.2017.3765;.
  5. Troupin A, Shirley D, Londono-Renteria B, Watson AM, McHale C, Hall A, Hartstone-Rose A, Klimstra WB, Gomez G, Colpitts TM. A Role for Human Skin Mast Cells in Dengue Virus Infection and Systemic Spread. J Immunol. 2016 Dec 01; 197(11):4382-4391. PMID: 27799312.
  6. Londono-Renteria B, Cardenas JC, Troupin A, Colpitts TM. Natural Mosquito-Pathogen Hybrid IgG4 Antibodies in Vector-Borne Diseases: A Hypothesis. Front Immunol. 2016; 7:380. PMID: 27746778.
  7. Londono-Renteria B, Troupin A, Colpitts TM. Arbovirosis and potential transmission blocking vaccines. Parasit Vectors. 2016 Sep 23; 9(1):516. PMID: 27664127.
  8. Conway MJ, Londono-Renteria B, Troupin A, Watson AM, Klimstra WB, Fikrig E, Colpitts TM. Aedes aegypti D7 Saliva Protein Inhibits Dengue Virus Infection. PLoS Negl Trop Dis. 2016 Sep; 10(9):e0004941. PMID: 27632170; PMCID: PMC5025043.
  9. Troupin A, Londono-Renteria B, Conway MJ, Cloherty E, Jameson S, Higgs S, Vanlandingham DL, Fikrig E, Colpitts TM. A novel mosquito ubiquitin targets viral envelope protein for degradation and reduces virion production during dengue virus infection. Biochim Biophys Acta. 2016 09; 1860(9):1898-909. PMID: 27241849; PMCID: PMC4949077.
  10. Londono-Renteria B, Grippin C, Cardenas JC, Troupin A, Colpitts TM. Human C5a Protein Participates in the Mosquito Immune Response Against Dengue Virus. J Med Entomol. 2016 05; 53(3):505-512. PMID: 26843451.
Showing 10 of 30 results. Show More

This graph shows the total number of publications by year, by first, middle/unknown, or last author.

Bar chart showing 30 publications over 12 distinct years, with a maximum of 8 publications in 2016

Contact for Mentoring:

Colpitts's Networks
Click the "See All" links for more information and interactive visualizations
Similar People
Same Department