Property | Value |
Research Expertise & Professional Interests
|
“To the clinician, systemic lupus erythematosus is important because it is a potentially fatal disease that is easily confused with many other disorders. To the immunologist, lupus is intriguing because all the key components of the immune system are involved in the underlying mechanisms of the disease.”(Anisur Rahman, Ph.D., and David A. Isenberg, M.D. N Engl J Med. 2008 Feb 28;358(9):929-39.). I have studied this devastating but intellectually challenging disease more than 10 years. Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the presence of great diversity of autoantibodies against nucleic acids (DNA and RNA) and other autoantigens. The autoantibodies form immune complexes that deposit in various tissues including the kidney, causing inflammation and end-organ damage. Current medications are only partially effective and have severe side effects.
My recent interest is neutrophil activation induced by immune complexes. Studies have shown that neutrophils release reactive oxygen species (ROS) and neutrophil extracellular traps (NETs) upon stimulation with RNA-containing immune complexes. My new goal is to investigate whether other immune complexes from SLE patients can activate neutrophils, and what kind of signaling pathways are involved in the activation.
I am also interested in the role of interferon regulatory factor-5 (IRF5) in the pathogenesis of SLE. Genetic studies have shown that mutations of IRF5 are associated with the disease severity of SLE. Using IRF5-deficient mice and lupus-prone mice, we have shown that IRF5 is a critical regulatory of SLE. In addition, we have shown that sera from SLE patients are able to activate plasmacytoid dendritic cells (pDC) to induce type I IFN , which is a pathogenic cytokines in SLE. We demonstrated that the type I IFN production from pDC is dependent on toll-like receptor-7 (TLR7) and IRF5. We investigate whether IRF5 is involved in the activation of B cells and T cells.
|
Self-Described Keywords
|
plasmacytoid dendritic cells
|