Joshua D. Campbell, PhD
Assistant Professor
Boston University School of Medicine
Dept of Medicine
Computational Biomedicine Section

PhD, Boston University



<b>Computational biology and bioinformatics.</b>
High-throughput genomic technologies are rapidly evolving including the areas of DNA and RNA sequencing. Novel types of complex data are being rapidly generated and require novel methods for quality control and analysis. We are currently focused on developing and/or applying methods for identifying genomic alterations in cancer, quantifying the mutagenic effect of carcinogens, and characterizing cellular heterogeneity using single cell RNA sequencing. We are applying these methods in the areas of lung cancer development and premalignancy as well as COPD pathogenesis as described below.

<b>Identifying early drivers of lung cancer.</b>
Lung adenocarcinomas and lung squamous cell carcinomas are the most common types of lung cancer and remain major causes of death worldwide despite advances in smoking cessation, early detection, and targeted and immunological therapies. Many patients have lung cancers that do not harbor a known activating mutation and therefore cannot be given targeted therapies. In collaboration with labs from Dana-Farber Cancer Institute, the Broad Institute, and The Cancer Genome Atlas (TCGA) consortium, we analyze next-generation sequencing data to identify novel drivers of lung tumorigenesis. Targeting these genes with novel therapies will hopefully lead to a reduction in overall lung cancer mortality. In collaboration with the Spira/Lenburg lab at BUSM, we are identifying the genomic alterations in premalignant lesions for squamous cell carcinoma with the ultimate goal of defining strategies for early detection.

<b>Therapeutic development and pathogenesis of COPD.</b>
Chronic Obstructive Pulmonary Disease (COPD) is the 4th leading cause of death in the world. Our understanding of the molecular mechanisms responsible for the initiation and progression of this disease are limited. By examining expression differences between individuals with and without COPD or differences within a person along a gradient of disease, we hope to elucidate the molecular mechanisms that responsible for disease initiation. Utilizing publicly available resources such as the Connectivity Map, we are also using gene expression data to predict novel therapeutics for the treatment of COPD.


Genome alterations associated with airway premalignant lesion progression
08/01/2016 - 07/31/2019 (PI)
American Thoracic Society/ LUNGevity Foundation




Yr Title Project-Sub Proj Pubs
Publications listed below are automatically derived from MEDLINE/PubMed and other sources, which might result in incorrect or missing publications. Faculty can login to make corrections and additions.

  1. Campbell JD, Alexandrov A, Kim J, Wala J, Berger AH, Pedamallu CS, Shukla SA, Guo G, Brooks AN, Murray BA, Imielinski M, Hu X, Ling S, Akbani R, Rosenberg M, Cibulskis C, Ramachandran A, Collisson EA, Kwiatkowski DJ, Lawrence MS, Weinstein JN, Verhaak RG, Wu CJ, Hammerman PS, Cherniack AD, Getz G, Artyomov MN, Schreiber R, Govindan R, Meyerson M. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat Genet. 2016 Jun; 48(6):607-16. PMID: 27158780; PMCID: PMC4884143; DOI: 10.1038/ng.3564;.
  2. Campbell JD, Mazzilli SA, Reid ME, Dhillon SS, Platero S, Beane J, Spira AE. The Case for a Pre-Cancer Genome Atlas (PCGA). Cancer Prev Res (Phila). 2016 Feb; 9(2):119-24.View Related Profiles. PMID: 26839336; DOI: 10.1158/1940-6207.CAPR-16-0024;.
  3. Sze MA, Dimitriu PA, Suzuki M, McDonough JE, Campbell JD, Brothers JF, Erb-Downward JR, Huffnagle GB, Hayashi S, Elliott WM, Cooper J, Sin DD, Lenburg ME, Spira A, Mohn WW, Hogg JC. Host Response to the Lung Microbiome in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med. 2015 Aug 15; 192(4):438-45.View Related Profiles. PMID: 25945594; PMCID: PMC4595667; DOI: 10.1164/rccm.201502-0223OC;.
  4. Tagne JB, Mohtar OR, Campbell JD, Lakshminarayanan M, Huang J, Hinds AC, Lu J, Ramirez MI. Transcription factor and microRNA interactions in lung cells: an inhibitory link between NK2 homeobox 1, miR-200c and the developmental and oncogenic factors Nfib and Myb. Respir Res. 2015; 16:22.View Related Profiles. PMID: 25763778; PMCID: PMC4335692; DOI: 10.1186/s12931-015-0186-6;.
  5. Yoo S, Takikawa S, Geraghty P, Argmann C, Campbell J, Lin L, Huang T, Tu Z, Foronjy RF, Feronjy R, Spira A, Schadt EE, Powell CA, Zhu J. Integrative analysis of DNA methylation and gene expression data identifies EPAS1 as a key regulator of COPD. PLoS Genet. 2015 Jan; 11(1):e1004898.View Related Profiles. PMID: 25569234; PMCID: PMC4287352; DOI: 10.1371/journal.pgen.1004898;.
  6. Campbell JD, Liu G, Luo L, Xiao J, Gerrein J, Juan-Guardela B, Tedrow J, Alekseyev YO, Yang IV, Correll M, Geraci M, Quackenbush J, Sciurba F, Schwartz DA, Kaminski N, Johnson WE, Monti S, Spira A, Beane J, Lenburg ME. Assessment of microRNA differential expression and detection in multiplexed small RNA sequencing data. RNA. 2015 Feb; 21(2):164-71.View Related Profiles. PMID: 25519487; PMCID: PMC4338344; DOI: 10.1261/rna.046060.114;.
  7. Lamontagne M, Timens W, Hao K, Bossé Y, Laviolette M, Steiling K, Campbell JD, Couture C, Conti M, Sherwood K, Hogg JC, Brandsma CA, van den Berge M, Sandford A, Lam S, Lenburg ME, Spira A, Paré PD, Nickle D, Sin DD, Postma DS. Genetic regulation of gene expression in the lung identifies CST3 and CD22 as potential causal genes for airflow obstruction. Thorax. 2014 Nov; 69(11):997-1004.View Related Profiles. PMID: 25182044; DOI: 10.1136/thoraxjnl-2014-205630;.
  8. Yoo S, Huang T, Campbell JD, Lee E, Tu Z, Geraci MW, Powell CA, Schadt EE, Spira A, Zhu J. MODMatcher: multi-omics data matcher for integrative genomic analysis. PLoS Comput Biol. 2014 Aug; 10(8):e1003790.View Related Profiles. PMID: 25122495; PMCID: PMC4133046; DOI: 10.1371/journal.pcbi.1003790;.
  9. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014 Jul 31; 511(7511):543-50. PMID: 25079552; PMCID: PMC4231481; DOI: 10.1038/nature13385;.
  10. Christenson SA, Brandsma CA, Campbell JD, Knight DA, Pechkovsky DV, Hogg JC, Timens W, Postma DS, Lenburg M, Spira A. miR-638 regulates gene expression networks associated with emphysematous lung destruction. Genome Med. 2013; 5(12):114.View Related Profiles. PMID: 24380442; DOI: 10.1186/gm519;.
Showing 10 of 16 results. Show More

This graph shows the total number of publications by year, by first, middle/unknown, or last author.

Bar chart showing 16 publications over 6 distinct years, with a maximum of 4 publications in 2014

YearPublications
20112
20122
20133
20144
20153
20162
Contact for Mentoring:

72 E. Concord St Evans Building
Boston MA 02118
Google Map


Campbell's Networks
Click the "See All" links for more information and interactive visualizations
Concepts
_
Co-Authors
_
Similar People
_
Same Department